

Benha University

Computer ECE 001

Computer Systems Engineering Electrical Engineering Department Faculty of Engineering (at Shoubra)

Sheet 4 - Sol

Ι								
•	1.10							
	Image size in pixels = $1024 \times 1024 = 1$ Mega Pixel							
	Image size in bytes $= 1 \times 3 = 3$ MB Storage capacity in images $= 256/3 \times 85$ Image							
	Storage capacity in images $= 25075$ ≈ 65 image							
•	1.12							
	a) Data retrieval from main memory is much faster than from disk storage.							
	Data in main memory can be referenced in byte-sized units rather than in large blocks.							
	b) Disk storage systems have a larger capacity than main memory.							
•	1.15							
	Novel size in characters = 400 × 3500 = 1400000 Character							
	Novel size in bytes (ASCII) = 1400000 \times 1 = 1400000 Byte \approx 1.4 Mega Byte							
	Novel size in bytes (Unicode) = 1400000 \times 2 = 2800000 Byte \approx 2.8 Mega Byte							
•								
	a) 15 b) 1 c) 21 d) 8 e) 19 f) 0							
	g) 9 h) 17 i) 33 j) 25 k) 26 l) 27							
•	1.27							
	a) 111 b) 1011 c) 10000 d) 10001 e) 11111							
•	1.34							
	a) $3^{3} 4 b$, $4^{5} 16 c$, $3^{13} 16 d$, $1 e$, $2^{1} 4$							
•	1.35							
	a) 101.11 b) 1111.1111 c) 101.011 d) 1.01 e) 110.101							
•	1.46							
	Four-byte capacity cells:							
	Number of cells = $4/4$ = 1 Mega Cell = 2^{20} Cell							
	Then the addresses range is (0000 0000 0000 0000 0000) ₂ : (1111 1111 1111 1111) ₂							
	In hexadecimal $(000000)_{16}$ to $(FFFF)_{16}$							
	One-byte capacity cells:							
	Number of cells= 4 / 1= 4 Mega Cell= $2^2 \times 2^{20}$ Cell= 2^{22} CellThen the addresses range is (00 0000 0000 0000 0000 0000): (11 1111 1111 1111 1111)							
	In hexadecimal (000000) ₁₆ to ($3FFFF$) ₁₆							
•	1 for the last memory address is (3FFFFF) ₁₆							
	1 1001 1 1011 1 0110 0 0000 1 1111 1 0001 1 0101 0 0100 0 1110							
	1.54							
-								
	a) nc b) FFD							
	c) DEAD							
	d) CABBAGE							
	e) CAFE							

Computer ECE 001

Benha University

Computer Systems Engineering Electrical Engineering Department

II Answer the following questions:

1.

10	+10.5+8-11	.6-9%			
L					
		111	11	111	11
a)	1100 b)	0111 c)	1011 d)	1010 e)	1100
	+ 0010	+ 0111	+ 0011	+ 0110	+ 0100
	1110	1110	1110	10000	10000

3.

a) RAM

Random Access Memory

{Computer's Main Memory}

b) Mass Storage

Mass Storage (or Secondary Storage) refers to larger capacity and less volatile storage media based on different technologies like:

Magnetic Electric ci

Electric current is used to write/read to/from this disk or tap covered with magnetic coating. {Magnetic Disk, Magnetic Tape}

• *Optical* Laser is use

Laser is used to write/read to/from reflective material covered with a clear protective coating. {CD, DVD}

Flash Technology

Electronic signals are used to write/read to/from array of floating gate transistors. {Flash Disk, SD Card}

c) Buffer

It is a storage area used to hold data on a temporary basis, usually during the process of being transferred from one device to another.

{Printer Buffer, Hard Disk Drive (HDD) Buffer}

d) ASCII

American Standard Code for Information Interchange It is a 7-bit binary code for representing 128 character of the English alphabet including a-z, A-Z, and 0-9.

010	0100	\$
011 011	0100 0101	4 5
 100 100	1101 1110	M N
110 110	1101 1110	m n
•••		